مقدمه
بطور کلی موقعیت سنجی از روش های مختلف زیر قابل حصول است :
خازنی، جریان یورشی، نوری، مقاومتی، سونار، لیزری، پیزوالکتریک، القایی، مغناطیسی.
سنسور های مغناطیسی برای بیش از 2000سال است که در حال استفاده می باشند. کاربرد اخیر سنسورهای مغناطیسی در رهیابی یاناوبری(Navigation) می باشد.
سنسورهای مغناطیسی از آهنربای دائمی و یا آهنربای الکتریکیِ تولید شده از جریان ac و dc استفاده می کند. سنسورهای مغناطیسی ، بطور کلی ، بر میدان مغناطیسی عمل می کنند و ویژگیهای آنها تحت تاثیر میدان مغناطیسی تغییر می کند. از ویژگیهای این سنسورها غیر تماسی بودن (Noncontact) آنهاست. در آنها هیچ اتصال مکانیکی میان قسمت های متحرک و قسمت های ثابت وجود ندارد. این خاصیت منجر به افزایش طول عمر آنها شده است. علاوه بر این لغزش قسمت های متحرک بر هم، در دیگر سنسورها مثل پتانسیومتر باعث ایجاد نویز می شود، که این مشکل در سنسورهای مغناطیسی رفع شده است.
سنسورهای مغناطیسی به سبب ساختار مناسبی که دارند در محیط های آلوده، چرب و روغنی بخوبی عمل می کنند و به همین علت در اتومبیل و کاربرد های این چنینی بسیار مفید هستند.
سنسورهای مغناطیسی بر مبنای رنج میدان اعمالی بصورت زیر تقسیم بندی می شوند:
Low field : کمتر از 1mG
Medium field : ما بین 1mG و 10G
High field : بالاتر از 10G
جابجایی ( Displacement ) به معنی تغییر موقعیت است. سنسورهای جابحایی به دو نوع افزایشی ( Incremental ) و مطلق ( Absolute ) تقسیم می شوند. سنسور های افزایشی میزان تغییر بین موقعیت فعلی و قبلی را مشخص می کنند. چنانچه اطلاعات مربوط به موقعیت فعلی از دست برود، مثلا منبع تغذیه دستگاه قطع بشود، سیستم باید به مبدا خود منتقل شود.( reset شود.) در نوع مطلق موقعیت فعلی بدون نیاز به اطلاعات مربوط به موقعیت قبلی بدست می آید. نوع مطلق نیازی به انتقال به مرجع خود را ندارد. معمولا سنسورهای جابجایی مطلق را سنسورهای موقعیت ( Position sensor ) می نامند.
( نمودارها و تصاویر در فایل اصلی قابل مشاهده است)
در این پروژه سعی شده است تا سنسورهای جابجایی ، موقعیت و مجاورتی ( Displacement , Position , Proximity ) پوشش داده شود.
بطور کلی زمانی که بخواهیم کمیت های فیزیکی مانند جهت ، حضور یا عدم حضور ، جریان ، چرخش و زاویه را اندازه گیری کنیم و از سنسورهای مغناطیسی استفاده کنیم ، ابتدا بایستی تا این کمیت ها یک میدان مغناطیسی را بوجود آورند و یا تغییری در میدان مغناطیسی یا در خصوصیات مغناطیسی سنسور ایجاد نمایند و در نهایت سنسور این تغییر را احساس نموده و آنرا با یک مدار بهسازی به جریان یا ولتاژ مناسب تغییر دهیم.
در ادامه اصطلاحاتی جهت یادآوری بیان می شود:
شدت میدان مغناطیسی (Magnetic field intensity) : آنرا با H نمایش می دهند و نیرویی است که شار مغناطیسی را در ماده به حرکت در می آورد. به همین علت بدان نیروی مغناطیس کنندگی (Magnetizing force) نیز می گویند. واحد آن آمپر بر متر می باشد.
چگالی شار مغناطیسی (Magnetic flux density) : آنرا با B نمایش می دهند. میزان شار مغناطیسی است که در واحد سطح ماده توسط نیروی مغناطیس کنندگی بوجود آمده است. واحد آن نیوتن بر آمپر بر مترمربع می باشد.
نفوذپذیری مغناطیسی (Magnetic permeability) : آنرا با نمایش می دهند. توانایی و قابلیت ماده جهت نگهداشتن و عبور شار مغناطیسی است. در فضای آزاد
رابطه
بر قرار است که نفوذ پذیری مغناطیسی فضای آزاد است و برابر می باشد. درسایر مواد رابطه به شکل خواهد بود که و نفوذ پذیری مغناطیسی نسبی ماده می باشد.
هیسترزیس ( Hysteresis ) : پدیده ای است که در آن حالت سیستم وارون پذیر نمی باشد. در یک سنسور جابجایی یا موقعیت این پدیده باعث می شود تا مقدار خوانده شده در یک نقطه توسط سنسور هنگام رسیدن بدان از بالا و پایین تفاوت بکند. شکل زیر این پدیده را نشان می دهد.
هیسترزیس مغناطیسی (Magnetic hystresis) : زمانی که یک ماده فرومغناطیسی در یک میدان مغناطیسی متغیر قرار می گیرد به سبب عقب افتادگی چگالی شار (B) از نیروی مغناطیس کنندگی (H) ، این پدیده رخ می دهد.
اشباع مغناطیسی (Magnetic saturation) : حد بالای توانایی یک ماده جهت عبور شار مغناطیسی از خود است.
سنسورهای اثرهال (Hall Effect Sensors)
مقدمه
یک عنصر هال از لایه نازکی ماده هادی با اتصالات خروجی عمود بر مسیر شارش جریان ساخته شده است وقتی این عنصر تحت یک میدان مغناطیسی قرار می گیرد، ولتاژ خروجی متناسب با قدرت میدان مغناطیسی تولید می کند. این ولتاژ بسیار کوچک و در حدود میکرو ولت است. بنابراین استفاده از مدارات بهسازی ضروری است. اگر چه سنسور اثرهال، سنسور میدان مغناطیسی است ولی می تواند به عنوان جزء اصلی در بسیاری از انواع حسگرهای جریان، دما، فشار و موقعیت و … استفاده شود. در سنسورها، سنسور اثر هال میدانی را که کمیت فیزیکی تولید می کند و یا تغییر می دهد حس می کند.
ویژگیهای عمومی
ویژگیهای عمومی سنسورهای اثرهال به قرار زیر می باشند:
1 - حالت جامد ؛ 2 - عمر طولانی ؛ 3 - عمل با سرعت بالا-پاسخ فرکانسی بالای 100KHZ ؛ 4 - عمل با ورودی ثابت (Zero Speed Sensor) ؛ 5 - اجزای غیر متحرک ؛ 6-ورودی و خروجی سازگار با سطح منطقیLogic Compatible input and output ؛ 7 - بازه دمایی گسترده (-40C ~ +150C) ؛ 8 - عملکرد تکرار پذیرعالی Highly Repeatable Operation ؛ 9 - یک عیب بزرگ این است که در این سیستمها پوشش مغناطیسی مناسب باید در نظرگرفته شود، چون وجود میدان های مغناطیسی دیگر باعث
می شود تا خطای زیادی در سیستم اتفاق افتد.
تاریخچه
اثرهال توسط دکتر ادوین هال (Edvin Hall) درسال 1879 در حالی کشف شد که او دانشجوی دکترای دانشگاه Johns Hopkins در بالتیمر(Baltimore) انگلیس بود.
هال درحال تحقیق بر تئوری جریان الکترون کلوین بود که دریافت زمانی که میدان یک آهنربا عمود بر سطح مستطیل نازکی از جنس طلا قرار گیرد که جریانی از آن عبور می کند، اختلاف پتانسیل الکتریکی در لبه های مخالف آن پدید می آید.
او دریافت که این ولتاژ متناسب با جریان عبوری از مدار و چگالی شار مغناطیسی عمود بر مدار است. اگر چه آزمایش هال موفقیت آمیز و صحیح بود ولی تا حدود 70 سال پیش از کشف آن کاربردی خارج از قلمرو فیزیک تئوری برای آن بدست نیامد.
با ورود مواد نیمه هادی در دهه 1950 اثرهال اولین کاربرد عملی خود را بدست آورد. درسال 1965 Joe Maupin ,Everett Vorthman برای تولید یک سنسور حالت جامد کاربردی وکم هزینه از میان ایده های متفاوت اثرهال را انتخاب نمودند. علت این انتخاب جا دادن تمام این سنسور بر روی یک تراشه سیلیکن با هزینه کم و ابعاد کوچک بوده است این کشف مهم ورود اثر هال به دنیای عملی و پروکاربرد خود درجهان بود.
تئوری اثرهال
اگر یک ماده هادی یا نیمه هادی که حامل جریان الکتریکی است در یک میدان مغناطیسی به شدت B که عمود برجهت جریان عبوری به مقدار I می باشد قرار گیرد، ولتاژی به مقدار V در عرض هادی تولید می شود.
این خاصیت در مواد نیمه هادی دارای مقدار بیشتری نسبت به مواد دیگر است و از این خاصیت در قطعات اثرهال تجارتی استفاده میشود. ولتاژها به این علت پدید می آید که میدان مغناطیسی باعث می شود تا نیروی لرنتز برجریان عمل کند و توزیع آنرا برهم بزند[F=q(V´B)]. نهایتا حاملهای جریان مسیر منحنی را مطابق شکل بپیمایند
حاملهای جریان اضافی روی یک لبه قطعه ظاهر می شوند، ضمن اینکه در لبه مخالف کمبود حامل اتفاق می افتد. این عدم تعادل بار باعث ایجاد ولتاژ هال می شود، که تا زمانی که میدان مغناطیسی حضور داشته و جریان برقرار است باقی می ماند
برای یک قطعه نیمه هادی یا هادی مستطیل شکل با ضخامت t ولتاژهایV توسط رابطه زیر بدست می آید:
،
KH ضریب هال برای ماده مورد نظر است که بستگی به موبیلیته بار و مقاومت هادی دارد.
آنتیمونید ایریدیم ترکیبی است که در ساخت عنصر اثرهال استفاده می شود.
ولتاژهال در رنج در سیلیکن بوجود می آید و تقویت کننده برای آن حتمی است. سیلیکن اثر پیز و مقاومتی دارد و بنابراین براثر فشار مقاومت آن تغییر می کند. در یک سنسور اثر هال باید این خصوصیت را به حداقل رساند تا دقت و صحت اندازه گیری افزوده شود. این عمل با قرار دادن عنصر هال بریک IC برای به حداقل رساندن اثر فشار و با استفاده از چند عنصر هال انجام میشود. بطوری که بر هر یک از دو بازوی مجاور مدار پل یک عنصر هال قرار گیرد، در یکی جریان بر میدان مغاطیسی عمود است و ولتاژ هال ایجاد می شود و در دیگری جریان موازی با میدان مغناطیسی می باشد و ولتاژ هال ایجاد نمیشود. استفاده از 4 عنصر هال نیز مرسوم می باشد